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ACOUSTIC EMISSION WAVEFORNS IN A HALF SPACE

Masayasu Ohtsu® and Kanji Ono

Department of Materisls Sciemce and Engineering,
School of Engineering and Applied Science,
University of Califormia, Los Angeles, California 90024.

! ¢ Now at the Department of Civil Engineering,
Kumamoto University, Kumamoto, 860 JAPAN.

ABSTRACT

A geueralized theory of acoustic emission (AE) is developed on the basis of
the theory of elastodynamics and dislocation models. Acoustic emission sources
are represented as dislocation sources and include both discontinuities of
displacement compononts and tractions. As AE waves are observed at a stress free
surface, Green's functions in a half space are obtained. Fortran programs for
computing these functions for non—Cauchy solids are used to calculate AE
waveforms from 8 point crack and moving cracks. Their implication om current
attempts of determining source characteristics via deconvolution is discussed. (1,».__

INTRODUCTION

Detailed analysis of acoustic emission (AE) waveforms has been difficult,
because of the high frequency range of AE signals, Quantitative evaluation of AE
signals as well as theoretical attempts to predict AE origimating from sources
with prescribed characteristics have been made. The theory of AE still faces
difficult problems, the most serious of which is the abssnce of Green’s functions
for relevant geometries,

The theory of AE must be able to specify the nature of & source starting
from a given displacement (or velocity) history at a defined point of
observation, Earlier, theories of dislocations and elastodynamics were applied
to simple analysis of AE generationm /1-3/, but omly in an infinite medium. For
any AE analysis, this is unsatisfactory as a stress—free surface must exist where
emissions are detected. AE in a half space (in a semi-infinite body) is a good
representation of special experiments /4,5/. Pekeris /6/ obtained an analytical
solution of Green’s function in a balf space for a Cauchy solid (Poisson’s ratio

= 0.25). Methods of gemeralized ray, normal modes and integral transforms have
been used to obtain a limited number of solutions for a plate /7-9/. In most of
these calculations, an AE source was represented by a force impulse or force
couple. While this representation is appropriate in calibration experiments that
utilize a force step, the characterization of most AE sources requires
displacement steps. In an infinite medium, the spatial derivatives of Green's
functions are used in conjunction with displacement functions, However, the
presence of a stress—~free surface makes this practice untenable, The spatial
derivatives of Green's functions in a half space or of a plate cannot be given in
an analytic form and require elaborate procedures ev:: in numerical computations.

In the present paper, we summarize a gemeralized theory of AE /10,11/ for
the representation of source characteristics. It is based on the integral
formulation of elastodynamics and the dislocation theory. We have employed
Fortran programs for the calculation of Green's functions in a half space for a
surface pulse and for a buried pulse. These computer programs can also compute
Green's functions of the second kind, which are suitable for the applications to
AE waveform si—~ lation. Several dynamic csses are comsidered,
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GENERALIZED THEORY OF AE

We prosent a generalized theory of AE using the integral representation of
a solutiom in elastodynmamics /11,12/. Let D denote a domain occupied by a given
body in the three dimensional space and S denote its boundary surface, With the
assumption of linear isotropic and homogeneous elastic body, an elastodynamic
problem is to solve the following equation in D;

Llvy(x, )] = (A + wuy 45+ puy 45 = puj = 0, (1)

where u.(x,t) is a displacement field at position, x, and time, t, and the comma
indicates a differentiation (u it du /3:1). L{ ] represents a differential
operator and is used to sinpli*& exptelsionz, A and p are Lame constants and p is
the mass density. Since the effect of a body force usually is not dominant in
elastodynamic problems, we omit the term of & body force in equatiom 1.

0 Xy
Fig., 1 Dislocation surface F situated
in elastic body D, surrounded
x by boundary S (S = S, + 8,).

The solution of equation 1 is subject to the initial conditions of a
quiescent past on D + 8 and boundary conditions on S, Boundary S consists of 81
and S,, where displacement 8; is given on S, and traction h; is given on §,, as
follow:

Bitx,t) - 8i(xt) on §;

T[ni(x.t)] = l“k,kni + “(“i,jnj + uj.inj) = hy(x, t) on S,

Here n, is the outward normal vector on S. Note that T[ ] is also used as a
diffar‘ntial operator that describes a relationship between a displacement field
and & traction,

For two arbitrary displacement fields ui(x't) and vi(x,t) in domain D, the
reciprocity theorem of elastodynamics states

J(Llu (x, t)1%v (x, t) - L{v,(x, t)]%,(x, t))dV
D

= g('l'[ni(x.t)]‘vi(x,t) - Tlv,(x, t)]%u (x, t))ds, 2

where * means a convolution integral with respect to time. Green’s function Gi
is then defined as a solution of the following equation: 4




LIG  (x, tsx",t0)] = = 8, 8(x-x")8(t-t"). (3)

Setting u, as a solution of equation 1 and v, to be Gi in equation 2, we obtain
the following integral form as a solution of equation i.

ni(x,t) - £ (Gik(x.t;x‘.t')‘tk(x',t') - Tik(x,t;x'.t’)‘nk(x'.t'))ds. (4)

where we define T[‘k] = t, and thik] = T;x- T;x indicates s traction

associated with a displacement field of Green's function Gi and sometimes is
called Green’'s function of the second kind. It is expressed as follows:

T, =
1j = 264y, 0 * ¥y B * MGy 40y

Next, consider a domain containing a dislocation, We assume homogeneous
boundary conditions on S (g, ~ 0 on S, and h; = 0 on S,) and consider amother
boundary F (dislocation surélce) as siovn in"Fig. 1. We apply equation 4 to
domain D surrounding boundaries S,, S, and F, and the following equation results:

ni(x,t) = £ (Gik(x.t;x'.t')‘fx(x’.t') + Tik(x.t;x',t')‘[nk(x'.t')])dF. (5)

Equation 5 represents any kind of dislocation sources, and provides the
generalized representation of AE source mechanisms. Generally speaking,
discontinunities of displacement and of traction exist on a dislocation surface.
However, it is likely that ome or the other has a dominant effect on AR
waveforms. Therefore, equation 5 can be simplified to contain either the first
or second term im the integramd, or

v.(x,t)) = i at’ {;Gik(x;x'.t—t’)fk(x'.t)dl?. (5a)
ui(x.t) = l; at’ £ Tik(x;x'.t-t')[uk(x'.t')]dF. (5b)

Denoting the elastic constant as C k‘(“k] can be expressed as

pqrs’ T
Tik.[“k] = Cpqr,‘G‘p.q[ur]n‘.

Unfortunately, G, is impossible to calculate analytically unless the medium is
infinitely bounde8.%In cases of interest to AE analysis, it is therefore
imperative to use equation Sb by directly calculating T X numerically, When
surface area F can be regarded as infinitesimal compared with domain D, the
surface integral in equation 5 is evaluated only &t a source point x' and is
equal to AF, Depending on the types of dislocations, equations Sa and 5b with
the initial conditions of a quiescent past cam be simplified to the following
convolution integrals:

t
ni(xlt) = AF é Gik(!.’x'.t"t')fk(x'.t')dt', (6)

mmﬁ\‘

t
u,(x,t) = AF { Tp(zix', t=t' ) [u (x',¢°))de’, N

]
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A discontinuity of the traction compoment, f., in equation 6 is equivalent
to a point force. Consequently, equation 6 is a-p}oyod to analyze wave motions
subject to an applied force, such as the breakage of a glass capillary and a
pencil lead. This equation is useful in the transducer calibration, but not
appropriate for the analysis of AE waveforms due to microfracturing events
(although it can be used with added difficulties), For the latter, it is
preferable to use oquation 7. Here, a discontinuity of displacement compoment is
directly related to the formation of a crack or any dynamic movement in a
material. By using equation 5b or 7, we can account for s moving dislocation
that represents an incremental extension of a precrack using the same method as
the fault model in the synthesis of seismograms /13/.

Considering the method of AE observation, we need solutions of equations §
to 7 at a stress—free surface, In order to analyze AE waveforms by equations 6
and 7, we find that a solution of equation 3 is a Greem’s function inm a hslf
space which can be substituted into the two equations. In real experiments, a
propagating modium is a finite body so that corresponding Green's functions
cannot be obtained easily. However, wave motions in a half space are obviously
observed before reflected waves arrive at the observation point. Thus, the
present method can provide the initial parts of AE waveforms except in very thin
plates and complex structures,

GREEN'’S CTIONS IN A PAC

The problem of determining the elastic disturbances resulting from a point
force in a half space is known as Lamb’s problems., Green’s functions in a half
space are only available as numerical solutions, and these solutions cannot
readily be applied to problems of interest in AE studies. The programs for
computing Lamb’s solutions were given elsewhere /11/. By using these programs,
vertical surface motions of a stress~free surface due to a step function force on
the same surface or that due to a buried source have been calculated /11/.

.} S CKS

a, A Point Crack

Using the program for a buried source with revised external functions, we
computed s Green'’s function of the second kind, T... We simulated AE waveforms
using this solution and equation 7. The dislocation model chosen for this study
is the case of a tensile crack parallel to the surface, or a Mode I crack. The
unit normal n, of the dislocation surface F is identical to the x,~axis, and a
displacement of the dislocation has only a [n3] component. From equation 7, the
resulting displacement is expressed, as follows:

‘3(!. t) = Tsa(l.t;"t).[ns(x';t')] = (mal,l‘*msz'z*(l + 2“)G33'3).[“3]o (8)

The spatial derivatives of Greem's functions, such as G 1.1 ° 63 , and 633 3
sare computed separately, again revising external functidnf., In %tﬁor to ’
investigate the applicability of this method, we computed the epicenter response
of T,,, which is due to s displacement discontinuity of a step function, The
resni% is shown inm Fig. 2.

By using the following time function /14/, we simulated AE waveforms:
[n(t) = ”.3[.5 t - -g) sin [f t - %} [0 Lt g t]

Results are shown in Fig. 3. The rise time t was assumed to be 750 ns. An
epicenter response (x, = 2.4 cm) and s response at x, = 6 mm and x, = 2.4 om are
salenlated to examine the effect of a shift of s source or the looition of a




transducer., It is interesting that due to a small shift of a source or a
transducer, the amplitude of the P-wave decreases and the S—wave becomes
stronger. Other effects of varying rise time, different observation points and
source functions can be calculated by this procedure,

oving Crack
Considering sequential shifts of the dislocation surface AF in equation 7

or using equation 5b, we can introduce offects of a moving crack, This can
roeadily be evaluated by using equation 5b or 7, but not easily sccomplished by

& 1
§
g S~wave
i
[~
4 F J
a
P-wave
0 5 10
Time (xlO-'6 sec)
Fig. 2 Green's function of the second kind T33‘f°f a buried source at the

spicenter,
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0 5 10
Time (xlO-6 sec)
Fig. 3 A simulated waveform of AE corresponding to the dislocation model -

representing a stationary Mode I crack (rise time of the source

function = 750 ns). A solid curve shows a response at an epicenter
at 2.4 cm above the crack and a broken curve shows a response at a
point 6 mm from the epicenter. .———1
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Fig. 4 A simulated waveform due to the moving crack model .giviag [u,],
(The rise time 1.ps, a length of the dislocation 0.2 mm and the
rupture velocity .500 m/s),

means of equation 5a or 6. The crack moves 0.2 mm in the x,~direction of at a
uniform velocity of 500 m/s. This is represented by four sequential applications
of & source displacement on the crack surface at four points im the x —~direction.
The same source fumction as in Fig. 3 was employed and the rise time was 1 ps.
The result is shown in Fig. 4. In comparison to the displacemont waveform due to
s single crack givenm in Fig. 3, we can see that the presence of a moving creck
broadens the peaks of the displacement response and decreases the amplitude of
the S-wave. The comparable experimental result of Wadley and Scruby /15/ agrees
with the displacement curve for the moving crack quite well.

DISCUSSION

Source characteristics of acoustic emission have been investigated as the
inverse problems using the deconvolution snalyses /15/. In these studies, Green's
fumctions of a point orack were used to deconvolve AE waveforms observed at
certain points of observation. The effect of a moving crack can be significant
on the inverse problem and needs to be examined. As we showed in the preceding
seotion, the moving crack broadened the AE waveform, VWhen a faster crack
velocity was used, the AE waveform was closer to that of Fig. 3. Obviously, ome
must use the dynamic Green's function in deconvolution analysis of any observed
AE waveforms. In the comventional deconvoluton amalysis, ome is forced to unse
the Green's function of a stetiomary point crack and it is impossible to take
into accouat the effect of a moving crack or dislocation.

In order to investigate the extent of errors due to the dynamic nature of
cracks on the iaverse problems, we performed deconvolution analyses of simulated
AR vaveforms. Simulated waveforms were transformed into the frequency domain by
fast Fourier tramnsform (FFT) and were divided by the corresponding Fourier
spectrum of Greea's fumotions of the second kind for s stationmary poimt crack,
These decomvolsted waveforms in the frequency domain were transformed into the
time domain by imverse FFT. Four examples are shown in Fig, S. These are
decomvolved source fuamctioms obtaimed from four cracks. Onme was a statiomary
point crack and the other three were dynamic cracks with the rupture velocities

Ve of 2000 /s, 1000 n's, and 500 m/s. Amplitudes are normalized in those
gzaphs,
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Fig. .S Source time functions recovered from simulated AE wgveforms for

the moving cracks. For the cracks with the ruptore velocities Vr
of 2000, 1000, 500 m/s and a statiomary crack.

The deconvolved waveforms for the stationary crack and those of two fast
rupture velocities recovered the essential features of the source function,
However, gradual decreases in displacement amplitudes were observed beyond the
original rise time of 1 us. This decrease wa exaggerated in the case of the slow
crack with V_ of 500 m/s. In this case, the amplitude became strongly negative
at 3 ps. Tiic behavior apparently arises from the summations of waveforms from
different sources staggered in space and time, Since one has no a priori ¥
knowledge of the source waveform, conventional deconvolution using Green's
function of a stationmary source may lead to uarealistic source functions,

CONCLUSIONS

1. A generalized theory of AE is presented in this paper. Applying the
reciprocity theorem of elastodynamics to a domain containing a dislocation,
displacement fields due to two components of the AE source function are expressed
by two integrals. Ome represents AE due to an applied force step. The other
represents AE due to a discontinuity of displacement components on the
dislocation surface, which corresponds to & crack or slip.

2. In order to amalyze realistic conditions of AE detection, Green's
functions of the second kind in a half space are numerically calculated by
Fortran progrsms. Several representative cases are investigated, including a
stationary (Mode I) crack and a moving crack.

3. Simulated AE waveforms from dynamic sources canm be easily obtained
using the preseat apprbach. Displacement response from a moving crack is
calculated,

4. Commonly used methods of deconvolution of acoustic emission waveforms
can produce grossly misleading conclusions, While a point crack response can be
deconvolved successfully, the deconmvolution of a moving crack responses may lead
to wrong sosrce charaoteristics, MNore extensive amalysis of the ''forward’
problems should be made before attempting the '’'inverse’’ problems.
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